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1. Introduction

Research in multiple particulate phase hydrodynamics is important in many industrial appli-
cations that involve segregation or mixing processes, specifically in mineral classification, elutri-
ation, sedimentation, crystallization and fluid bed leaching, just to name a few. There have been
several investigations dealing with segregation and mixing of particles of different sizes and
densities in fluidized bed reactors or classifiers (Chen et al., 2002). The studies show that particles
will segregate into layers if a bed, consisting of two different size particles with the same density, is
fluidized with a velocity that is in between the individual minimum fluidization ðumfÞ velocities for
each particle type. The binary system will not segregate if the fluidizing velocity is higher than the
umf of the larger particles; rather the particles mix vigorously. The models reported in the liter-
ature are able to predict the segregation of the particles at an intermediate fluidization velocity
(Goldschmidt et al., 2001). However, they predict particle segregation even at a low fluidization
velocity, when segregation is not observed. In this study we modified the particle–particle drag
term so that the model predicts no segregation at low velocities, segregation at intermediate
velocities, and mixing at high velocities. Furthermore we show that the predicted rate of segre-
gation at intermediate velocities agrees quantitatively with experimental data.

In the last decade, considerable efforts have been made in developing detailed hydrodynamic
tools for the simulation of fluidized bed dynamics, including Eulerian/Lagrangian, and the hybrid
Eulerian/Lagrangian mapping methods. Eulerian/Eulerian methods consider the primary and
secondary (dispersed) phases to be interpenetrating continua, and the equations employed are
generalizations of the Navier–Stokes equations (e.g., Gidaspow, 1994). Eulerian/Lagrangian
models describe the primary phase flow using the continuum equations, and the particulate phase
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flow is described by tracking the motion of individual particles (e.g., Tsuji et al., 1993; Gera et al.,
1998). Lagrangian models include the effects of particle collisions and the forces acting on the
particles by the gas.

The focus of this paper is on Eulerian/Eulerian methods for the computation of gas–solids
flows. Eulerian/Eulerian methods are potentially faster than Eulerian/Lagrangian methods, but
require the formulation of constitutive equations. We extended a two-fluid model (gas and one
granular phase) to a multi-fluid model (gas and several granular phases) by adding constitutive
equations for the particle–particle drag and the maximum particle packing. The new constitutive
equations are added in the MFIX code, an open-source multiphase flow model (Syamlal et al.,
1993, www.mfix.org). The model is used to describe solids segregation in a dense fluidized bed.
2. Hydrodynamic model

The mathematical model is based on the assumption that the phases can be mathematically
described as interpenetrating continua; the point variables are averaged over a region that is large
compared with the particle spacing but much smaller than the flow domain (e.g., Anderson and
Jackson, 1967). The equations solved by the MFIX code used in this study are given in Syamlal
et al. (1993). The continuity equation for each phase is written as:
o

ot
ðemqmÞ þ r � ðemqm~vmÞ ¼ 0 ð1Þ
where qm and~vm are the density and velocity of the mth phase (m ¼ 0 represents the gas phase),
respectively, em is the volume fraction of the mth phase with the condition

P
m em ¼ 1.

The momentum equation for the gas phase is expressed as:
o

ot
ðe0q0~v0Þ þ r � ðe0q0~v0~v0Þ ¼ r � S0 þ e0q0~g �

XM
m¼1

~I0m ð2Þ
where the stress tensor for the gas phase is defined as:
S0 ¼ �P0I þ e0l0½r~v0 þ ðr~v0ÞT� þ e0 k0

�
� 2

3
l0

�
r �~v0I ð3Þ
Here P0 is the gas pressure, l0 and k0 are the shear and bulk viscosity of the gas phase, I is a unit
tensor,~I0m is an interaction (or drag) force representing the momentum transfer between the gas
phase and the mth solid phase. The interaction force~I0m is written as:
~I0m ¼ emrP0 � F0mð~vm �~v0Þ ð4Þ
where the interaction–exchange coefficient ðF0mÞ between the gas phase and the mth solid phase is
written as (Gidaspow, 1994):
F0m ¼
150 emð1�e0Þ

e0d2pm
l0 þ 1:75em

q0
dp
jvm � v0j for e6 0:8

0:75eme0q0
dpm

CDj~vm �~v0je�2:65
0 for e > 0:8

(
ð5Þ
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and
CD ¼ 24ð1þ 0:15Re0:687m Þ=Rem; Rem < 1000

0:43; Rem P 1000

�
ð6Þ
where dpm is the particle diameter of the mth solids phase. The Reynolds number for the mth solids
phase is given by
Rem ¼ dpmj~vm �~v0jq0=l0
The momentum equation for each of the �m� solid phases is expressed as:
o

ot
ðem qm ~vmÞ þ r � ðem qm ~vm ~vmÞ ¼ r � Sm þ emqm~g þ~I0m �

XM
l¼1
l6¼m

~Iml ð7Þ
where the stress tensor for the mth solid phase is defined by combining the theories of viscous and
plastic flow regimes as (Syamlal et al., 1993):
Sm ¼ �P p
mI þ s

p

m if e0 6 e�0
�P v

mI þ s
v

m if e0 > e�0

(
ð8Þ
Here Pm is the pressure and sm is the viscous stress in the mth solids phase. The superscript p stands
for plastic regime and v for viscous regime. In fluidized-bed simulations, e�0 is set to the void
fraction at the minimum fluidization. The plastic stresses are calculated using Schaeffer�s (1987)
formulation:
s
p

m ¼ 2lp
mDm ð9Þ
where
lp
m ¼ P � sin/

2
ffiffiffiffiffiffi
I2D

p ð10Þ
Here Dm is the strain rate tensor for the mth phase, I2D is the second invariant of the deviator of the
strain rate tensor (see Syamlal et al., 1993), and / is an angle of internal friction. Similar to the
functions typically used in plastic flow theories (Jenike, 1987), an arbitrary function that allows a
certain amount of compressibility in the solids phase represents the solids pressure term for plastic
flow regime (Pritchett et al., 1978):
P p
m ¼ emP � ð11Þ
where P � is represented by an empirical power law (Jenike, 1987)
P � ¼ 1025ðe�0 � e0Þ10: ð12Þ

In gas–solids flow calculations, solids pressure functions are used to prevent solids from

reaching unphysically large solids� volume fractions, greater than the maximum solids packing
limit. Gidaspow (1994) discussed that this term becomes of numerical significance only when the
void fraction goes below the minimum fluidization void fraction. It also helps to make the system
numerically stable because it converts the imaginary characteristics into real values. Physically,
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the solids pressure needs to be represented as a step function of solids volume fraction to model
the granular media as an incompressible fluid.

In addition, Lun et al. (1984) theory was extended to describe stresses in multiple granular
phases in viscous regime. The granular pressure is given by (Syamlal et al., 1993)
P v
m ¼ K1m e2m Hm ð13Þ
where K1m is a constant, Hm is the granular temperature. Additional details about the model
formulation are given by Syamlal et al. (1993), and the solution algorithm is described by Syamlal
(1998).

2.1. Particle–particle drag with ‘hindrance effect’

The particle–particle interaction force~Ilm is written as:
For the drag ~Ilm ¼ Flmð~vm �~vlÞ ð14Þ

Fml ¼
3ð1þ elmÞðp=2þ Cflmp2=8Þelqlemqmðdpl þ dpmÞ2g0lm j~vl �~vmj

2pðqld
3
pl þ qmd3

pmÞ
þ C1P � ð15Þ
In the first term of the coefficient Fml, derived by Syamlal (1987), elm and Cflm are the coefficient of
restitution and coefficient of friction, respectively, between the lth and mth granular-phase par-
ticles. The radial distribution function at contact, g0lm , is that derived by Lebowitz (1964) for a
mixture of hard spheres:
g0lm ¼ 1

e0
þ 3dpldpm
e20ðdpl þ dpmÞ

XM
k¼1

ek
dpk

ð16Þ
The first term on the right side of Eq. (15) accounts for the momentum transfer between the
phases because of collisions and sliding.

During this study it was found that a new term (the second term on the right side of Eq. (15)) is
required to account for a ‘‘hindrance effect’’ in dense particulate flow. In the present formulation,
a granular medium consisting of two types of particles is described as two distinct phases. When
the particles are closely packed and the diameter ratio is such that the fines cannot percolate
through the interstices of the packed bed, the description as two separate particulate phases is
inadequate. For example, the model would predict that the two types of particles of different
densities would segregate even in a packed bed, whereas, in reality, they do not. The particles do
not experience any buoyant force from solids pressure gradient and behave as a single phase. One
way to model such a system is to treat it as a single phase as though a ‘‘phase change’’ (multiphase
to single phase) has occurred. The implementation of such a model is difficult, and the model is
expected to be computationally expensive. So we propose the simple expedient of making the
particle–particle drag sufficiently large to account for the ‘‘hindrance effect’’ so that the two-
phases will move together and, in effect, behave as a single phase.

The ‘‘hindrance effect’’ is a manifestation of the enduring contacts between the particles and
cannot be derived using kinetic theory as in the case of the first term in Eq. (15). So we have taken
an heuristic approach guided by the frictional flow theory. We expect the rate of increase in the
particle–particle drag to be analogous to the stresses in the frictional regime (Eqs. (9) and (10)),
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and, hence, proportional to the granular pressure P � (Eq. (12))––the greater the granular pressure
the greater the tendency for the two phases to move together as a single phase. We expect this
functional form to allow the prediction of the fluidization behavior of a binary particle system
under three conditions:

1. For fluidization velocity U < umf (minimum fluidization velocity) of small particles, the two ini-
tially well-mixed phases should not separate.

2. For umf of small particles< U < umf of large particles, the two initially well-mixed phases
should separate.

3. For U > umf of large particles, the two initially well-mixed phases should remain well mixed.

The experimental rate of separation was used to adjust C1. A value of 0.3 was found to provide
the correct initial slope in Fig. 2. With this value our model was able to match all the above three
conditions, which partially (i.e., with respect to the change in fluidization velocity) validates the
functional form of the ‘‘hindrance effect’’ term. Ideally, a universal value of C1 is sought, however
due to the limited number of simulations done so far by us, this cannot be confirmed.

2.2. Effect of maximum packing voidage

Mixing particles with different sizes leads to an increase in the maximum packing voidage of the
bed. For example, if large spherical beads are mixed with smaller spherical beads, the maximum
particle volume fraction of the mixture will be greater than the maximum particle volume fraction
of either particle type. Fedors and Landel (1979) proposed the following correlations for the
maximum packing voidage for a binary mixture of two particle diameters ðd1 > d2Þ as a function
of mixture composition X1 ¼ e1=ðe1 þ e2Þ:
if
X1 6
emax
1

ðemax
1 þ ð1� emax

1 Þemax
2 Þ

e�0 ¼ 1:0� emax
1

 
� emax

2 þ 1

"
�

ffiffiffiffiffi
d2
d1

r #
ð1� emax

1 Þemax
2

!
emax
1

�
þ ð1� emax

2 Þemax
1

� X1

emax
1

þ emax
2

otherwise
e�0 ¼ 1:0� 1

"
�

ffiffiffiffiffi
d2
d1

r #
emax
1

�
þ ð1� emax

1 Þemax
2

�
ð1� X1Þ þ emax

1 ð17Þ
These correlations are used for the maximum packing voidage as a function of mixture compo-
sition in the granular pressure and particle–particle drag terms in Eqs. (8), (12) and (15).
3. Binary particle simulations in dense regime

The hydrodynamic model equations are solved for a dense bed of binary-dispersed spherical
glass beads of 1.5 and 2.5 mm diameter with density of 2524 kg/m3, as shown in Fig. 1. A solids



Fig. 1. Schematic of a fluidized bed segregator.
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volume fraction of 30% for each of the two granular phases is the initial condition in the bed. The
properties of the glass beads (see Table 1) are taken from Goldschmidt et al. (2001). The minimum
fluidization velocity (umf) of the small particles is 0.78 ± 0.02 m/s; that of the large particles is
1.25± 0.01 m/s. Two fluidization velocities are used in the simulations: 1.1 m/s, a condition for
which segregation should occur; and 1.25 m/s, a condition for which vigorous mixing should
occur. These velocities are chosen to demonstrate (a) the segregation of particles when the flui-
dizing velocity is in between the umf of two particle types, and (b) vigorous mixing when the
fluidizing velocity is equal to or greater than the umf of the larger particles. The computational grid
in the present simulations consists of 15· 50 rectangular cells. The convection terms are dis-
cretized using the second order accurate superbee method (Leonard and Mokhtari, 1990, Syamlal,
1998).
Table 1

Properties of glass beads used in the simulations

Small particles Large particles

Diameter (dp1, dp2) 1.5 mm 2.5 mm

Density (q1; q2) 2524 kg/m3 2524 kg/m3

Minimum fluidization velocity (umf ) 0.78 m/s 1.25 m/s

Coefficient of normal restitution (e) 0.97 0.97

Coefficient of friction (Cflm) 0.15 0.15
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The segregation rate has been quantified by Goldschmidt et al. (2001) using a digital image
analysis technique. We used the same procedure as proposed by Goldschmidt et al. (2001) for
calculating the average height of the solids phases in the bed:
Fig. 2

veloci
hhmi ¼
P

cell em;cellhcellP
cell em;cell

ð18Þ
where em;cell is the volume fraction of solids phase m in the cell and hcell is the height of the cell
center above the distributor plate; the sum is over all cells in the computational domain. The
average height of the two phases predicted by the current model is compared with the experi-
mental data of Goldschmidt et al. (2001) at 1.10 m/s in Fig. 2(a). The rate of segregation is same as
the slope of hhi vs. time curve in Fig. 2(a). The slope of the curve for large particles was matched
up to 18 s, and after which slope became constant. Therefore, the constant C1 was adjusted to
match the initial rate of segregation of the large particles. As described earlier, C1 is a coefficient in
a particle-to-particle interaction force term (Ilm: Eqs. (14) and (15)). Hence, this coefficient can be
used to match either the slope of large particles or small particles. As a matter of convenience, the
slope of large particles was matched in this work. However, C1 is not expected to change
. (a) Comparison of average particle heights obtained from the digital analysis data and the CFD at fluidization

ty at 1.10 m/s and (b) particle segregation predicted by CFD.



Fig. 3. Comparison of average particle heights obtained from the digital analysis data and the CFD at fluidization

velocity at 1.25 m/s for (a) 1.5 mm particles, and (b) 2.5 mm particles. (c) Particle segregation predicted by CFD.
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significantly even if the slope of small particles were to be matched. The model captures the slow
segregation during the first 8 s followed by a rapid segregation during the next 10 s. At the end of
18 s, the segregation is nearly complete. We continued the simulation up to 60 s to determine the
steady state heights of the particulate phases. The height of the small particle layer is well captured
by the model. The predicted height of the large particle layer is larger than the experimental value.
Eq. (18), used for calculating the heights, does not impose any constraint on the sum of the
heights. Thus, a good match in the height of the small particle layer does not imply a good match
in the height of the large particle as well.

To aid the visualization of the binary particle system, the number of particles in a grid cell is
calculated from the solid volume fraction and a corresponding number of dots are placed ran-
domly in each cell in Fig. 2b. Initially the particles are well mixed. By 20 s a distinct large particle
layer forms at the bottom of the bed. That layer appears to be free of small particles. However, the
upper layer, which predominantly consists of small particles, contains a fair number of large
particles. This causes the over prediction of the height of the large particle layer (Fig. 2a).

The average height of solids phases predicted by the current model at 1.25 m/s is compared with
the experimentally measured values in Fig. 3(a) and (b). The corresponding particle number
concentration is plotted in Fig. 3(c). The current model predicts the mixing phenomenon very
well, unlike previously reported models (e.g., Goldschmidt et al., 2001). The value of the constant
C1 was kept unchanged in this simulation. It can be seen that for 1.25 m/s, the bed starts to bubble
and hence leads to the mixing of the particles.
4. Conclusions

A two fluid model is extended to a multi-fluid model. In this model, a primary air phase and
two additional particulate phases (each representing a separate class of particle diameters) were
tracked in dense regime. A particle-to-particle drag term was developed to account for a ‘‘hin-
drance’’ effect caused by enduring contacts between particles. With this term, the simulations
predict no segregation at low fluidization velocities, segregation at intermediate velocities, and
vigorous mixing at large fluidizing velocities. The predicted segregation rate for a three-phase
fluidized bed matches very well with the measured values.
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